Math 241 Sample Problems for Exam 2

Question 1 Use Lagrange multipliers to find the maximum and minimum values of $f(x, y, z)=x-2 y+5 z$ on the sphere $x^{2}+y^{2}+z^{2}=30$.

Question 2 Evaluate the following double integral:

$$
\int_{0}^{2} \int_{y / 2}^{1} y e^{x^{3}} d x d y
$$

Question 3 Find the volume of the solid in space which lies below the surface $z=3+\cos y$ and above the region in the $x y$-plane bounded by the curves $x=\pi, y=0$, and $y=2 x$ by evaluating an appropriate double integral.

Question 4 Let R be the solid region bounded by the planes $x=0, y=0, z=2$, and the paraboloid $z=x^{2}+y^{2}$, in the first octant. Compute $\iiint_{R} x d V$.

Question 5 Find the volume determined by $z \leq 6-x^{2}-y^{2}$ and $z \geq \sqrt{x^{2}+y^{2}}$.
Question 6 Convert the integral $\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-y^{2}}}^{\sqrt{2-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} z^{2} d z d x d y$ to spherical coordinates. Don't evaluate it.

Question 7 Evaluate $\iint_{R} \exp \left(\frac{y-x}{y+x}\right) d A$ where R is the triangle with vertices $(0,0),(1,0),(0,1)$, by using the change of variables $x=\frac{1}{2}(v-u), y=\frac{1}{2}(u+v)$.

Question 8

a) Evaluate the line integral $\int_{\mathbf{c}} x^{2} y d x+x y^{3} d y$, where \mathbf{c} consists of the line segments from $(0,0)$ to $(3,3)$ and from $(3,3)$ to $(0,3)$.
b) Evaluate the line integral $\int_{\mathbf{c}}\left(e^{y}+y e^{x}\right) d x+\left(e^{x}+x e^{y}\right) d y$, where \mathbf{c} is the part of the graph $y=\ln 6 x$ joining $(1 / 6,0)$ to $(1 / 2, \ln 3)$.

Question 9 Find the area of the surface that is part of the sphere $x^{2}+y^{2}+z^{2}=4 z$ that lies inside the paraboloid $z=x^{2}+y^{2}$.

